If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.4x^2-1.3x+1=0
a = 0.4; b = -1.3; c = +1;
Δ = b2-4ac
Δ = -1.32-4·0.4·1
Δ = 0.09
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1.3)-\sqrt{0.09}}{2*0.4}=\frac{1.3-\sqrt{0.09}}{0.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1.3)+\sqrt{0.09}}{2*0.4}=\frac{1.3+\sqrt{0.09}}{0.8} $
| 3x-39=−78 | | X-0.10x=108 | | (6x-16)=(11x+9)=180 | | (6x-16)=(11x+9)=130 | | x^2+2^1011x+2^2020=0 | | 5y+3y+4y=-12 | | F(-3)=8+2x | | 7t+15÷2=6t | | 7t+15/2=6t | | 8x-15=4x-3 | | 15=20+11+k=19 | | 3x²—12x—15=0 | | 8m^2-24=21 | | w^2+15w-126=0 | | 12t+4.9t^{2}=5.8 | | 9(x−1)=2, | | 9x+2=14x-7 | | 18+9=x-9 | | 12.1t+4.9t^{2}=5.8 | | 18+9=x-19 | | 18+x=14+x | | 5x+15+-5+7x=180 | | 8h=2h-24 | | 49h-200=0 | | A=1/2(10d) | | (1/3)^2x+3=9^x-5 | | 2x+20°=x+70° | | 9x=20=3+16 | | 10(10x-6)-4(6-5x)+3(-6x+2)=-9(6-5x) | | -u/6=-40 | | 58=-w+167 | | -21=-1/10j |